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Nonlinear δf simulations of collective effects in intense charged

particle beams

Hong Qin

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

Abstract

A nonlinear δf particle simulation method based on the Vlasov-Maxwell equations has been

recently developed to study collective processes in high-intensity beams, where space-charge and

magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Imple-

mented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R. C. Davidson,

and W. W. Lee, Phys. Rev. Special Topics on Accel. and Beams 3, 084401 (2000); 3, 109901

(2000).], the nonlinear δf method provides a low-noise and self-consistent tool for simulating collec-

tive interactions and nonlinear dynamics of high-intensity beams in modern and next generation

accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers.

A wide range of linear eigenmodes of high intensity charged particle beams can be systematically

studied using the BEST code. Simulation results for the electron-proton two-stream instability

in the Proton Storage Ring experiment [R. Macek, et al, in Proc. of the Particle Accelerator

Conference, Chicago, 2001 (IEEE, Piscataway, NJ, 2001), Vol. 1, p. 688.] at the Los Alamos

National Laboratory agree well with experimental observations. Large-scale parallel simulations

have also been carried out for the ion-electron two-stream instability in the very-high-intensity

heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results

indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can

be stabilized by a modest axial momentum spread of the beam particles.
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I. INTRODUCTION

In contemporary periodic focusing accelerators and transport systems for applications

such as spallation neutron sources, heavy ion fusion, and nuclear waste transmutation, the

beam intensity has increased to regimes where collective processes and self-field effects play

a significant role. It is therefore increasingly important to improve our theoretical under-

standing of the influence of the intense self-fields produced by the beam space charge and

current on detailed equilibrium, stability and transport properties. A kinetic model based

on the nonlinear Vlasov-Maxwell equations has been developed to study self-consistently

the collective processes and self-field effects in high intensity charged particle beams [1, 2].

With the help of various analytical techniques, the kinetic approach has been successfully

applied to a wide range of beam physics problem involving strong space-charge and high

current. For example, a nonlinear kinetic stability theorem has been proved for charged

particle beams with arbitrary space-charge intensity in the smooth focusing approximation

[2–4]. However, many important questions are still unaccessible by analytical methods.

Recently, the δf formalism, a low-noise, nonlinear perturbative particle simulation tech-

nique, has been developed to solve the nonlinear Vlasov-Maxwell equations for intense beam

applications [5–9]. The δf formalism has been implemented in the Beam Equilibrium, Sta-

bility and Transport (BEST) code at the Princeton Plasma Physics Laboratory. In addition,

the BEST code is fully three-dimensional and has multi-species capability. It has been used

to investigate the electron-ion two-stream instability [7, 9], temperature anisotropy instabil-

ity [8], periodically-focusing beam propagation [7] and other collective processes. Especially,

simulations carried out by the BEST code for the electron-proton (e-p) two-stream instabil-

ity in the Proton Storage Ring (PSR) at the Los Alamos National Laboratory has produced

results in good agreement with experimental observations.

In this paper, we will present a comprehensive description of the simulation capabilities

of the BEST code and its applications to beam physics problems involving strong space

charge and high current. The paper is organized as follows. The theoretical model and δf

formalism are outlined in Sec. II. Following a short description of the numerically solved

equilibrium in Sec. III, we present in Sec. IV simulation results for two classes of collective

modes, i.e., the body mode and the surface mode. In Sec. V, the electron-ion two-stream

instability is studied in detail for a typical proton beam in the PSR experiment at moderate
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beam intensity, and for a Cesium beam with very high beam intensity for heavy ion fusion

drivers. We summarize the conclusions and discuss future work in Sec. VI.

II. THEORETICAL MODEL AND THE δf FORMALISM FOR HIGH INTEN-

SITY CHARGED PARTICLE BEAMS

The theoretical model employed here to study the high intensity charged particle beams

is based on the nonlinear Vlasov-Maxwell equations [1, 2]. We consider a thin, continuous,

high-intensity charged particle beam (j = b) propagating in the z-direction. Possible back-

ground electron and ion components (j = e, i) are allowed in the system. A background

population of electrons, for example, can result by secondary emission when energetic ions

or electrons strike the chamber wall, or through ionization of background neutral gas by the

beam particles. Each charge component is described by a distribution function fj(x,p, t)

[1, 2] in the phase space (x,p). The charge components (j = b, e, i) propagate in the

z-direction with characteristic axial momentum γjmjβjc, where Vj = βjc is the average di-

rected axial velocity, γj = (1−β2
j )

−1/2 is the relativistic mass factor, ej and mj are the charge

and rest mass, respectively, of a j’th species particle, and c is the speed of light in vacuo.

While the nonlinear δf formalism outlined here is readily adapted to the case of a periodic

applied focusing field [10], for present purpose we make use of a smooth-focusing model in

which the applied focusing force is described by Ffoc
j = −γjmjω

2
βjx⊥, where x⊥ = xêx + yêy

is the transverse displacement of a particle from the beam axis, and ωβj = const is the

effective applied betatron frequency for transverse oscillations. Furthermore, in a frame of

reference moving with axial velocity βjc, the motion of a j’th species particle is assumed to

be nonrelativistic. The space-charge intensity is allowed to be arbitrarily large, subject only

to transverse confinement of each charge component. In a two-species system consisting of

beam ions and stationary background electrons, for example, the beam ions are confined

by the applied focusing force, while the background electrons are confined in the transverse

plane by the space-charge potential φ(x, t) produced by the excess ion charge. In the elec-

trostatic and magnetostatic approximations, we represent the self-electric and self-magnetic

fields as Es = −∇φ(x, t) and Bs = ∇×Az(x, t)êz. The nonlinear Vlasov-Maxwell equations
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can be approximated by [1, 2]{
∂

∂t
+ v · ∂

∂x
− [γjmjω

2
βjx⊥ + ej(∇φ − vz

c
∇⊥Az)] · ∂

∂p

}
fj(x,p, t) = 0, (1)

and

∇2φ = −4π
∑

j

ej

∫
d3pfj(x,p, t),

∇2Az = −4π

c

∑
j

ej

∫
d3pvzfj(x,p, t).

(2)

In the nonlinear δf formalism [5–9], we divide the total distribution function into two

parts, fj = fj0 + δfj, where fj0 is a known equilibrium solution (∂/∂t = 0) to the nonlinear

Vlasov-Maxwell equations (1) and (2), and the numerical simulation is carried out to de-

termine the detailed nonlinear evolution of the perturbed distribution function δfj. This is

accomplished by advancing the weight function defined by wj ≡ δfj/fj , together with the

particles’ positions and momenta. The equations of motion for the particles, obtained from

the characteristics of the nonlinear Vlasov equation (1), are given by

dx⊥ji

dt
= (γjmj)

−1p⊥ji,

dzji

dt
= vzji = βjc + γ−3

j m−1
j (pzji − γjmjβjc),

dpji

dt
= −γjmjω

2
βjx⊥ji − ej

(
∇φ− vzji

c
∇⊥Az

)
.

(3)

Here the subscript “ji” labels the i’th simulation particle of the j’th species. Furthermore,

the dynamical equations for wji is [5, 7–9]

dwji

dt
= −(1 − wji)

1

fj0

∂fj0

∂p
· δ

(
dpji

dt

)
,

δ

(
dpji

dt

)
≡ −ej

(
∇δφ− vzji

c
∇⊥δAz

)
,

(4)

where δφ = φ−φ0 and δAz = Az −Az0. Here, the equilibrium solutions (φ0, Az0, fj0 ) solve

the steady-state (∂/∂t = 0) Vlasov-Maxwell equations (1) and (2). A wide variety of ax-

isymmetric equilibrium solutions to Eqs. (1) and (2) have been investigated in the literature

[1, 2, 11]. The perturbed distribution δfj is obtained through the weighted Klimontovich

representation [1, 2]

δfj =
Nj

Nsj

Nsj∑
i=1

wjiδ(x− xji)δ(p− pji), (5)
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where Nj is the total number of actual j’th species particles, and Nsj is the total number of

simulation particles for the j’th species. Maxwell’s equations are also expressed in terms of

the perturbed fields and perturbed density according to

∇2δφ = −4π
∑

j

ejδnj, ∇2δAz = −4π

c

∑
j

δjzj , (6)

where

δnj =
Nj

Nsj

Nsj∑
i=1

wjiS(x − xji),

δjzj =
ejNj

Nsj

Nsj∑
i=1

vzjiwjiS(x − xji).

(7)

Here, S(x−xji) is a shape function distributing particles on the grids in configuration space

[7].

The nonlinear δf particle simulations are carried out by iteratively advancing the parti-

cle motions, including the weights they carry, according to Eqs. (3) and (4), and updating

the fields by solving the perturbed Maxwell’s equations (6) with appropriate boundary con-

ditions. Even though it is a perturbative approach, the δf method is fully nonlinear and

simulates completely the original nonlinear Vlasov-Maxwell equations. Compared with con-

ventional particle-in-cell (PIC) simulations, the noise level in δf simulations is significantly

reduced. The dominant numerical noise mechanisms in particle simulations, such as nu-

merical collisions, are statistical. The δf method reduces the noise level in the simulations

because the statistical noise, which is of order O(N
−1/2
s ) for the total distribution function in

the conventional particle-in-cell method, is only associated with the perturbed distribution

function in the δf method. If the same number of simulation particles is used in the two

approaches, then the noise level in the δf method is reduced by a factor of f/δf relative

to the conventional PIC method. To achieve the same accuracy for the perturbed fields,

the number of simulation particles used in the δf method is reduced by a factor of (f/δf)2.

For the e-p two-stream instability in the PSR experiment studied in Sec. V, we obtain sat-

isfactory simulation results with about 105 simulation particles using the δf method. If the

conventional PIC method were used, then for a nonlinear saturation level of 1%, about 104

times more simulation particles would be needed to achieve the same accuracy. When study-

ing the ion-electron two-stream instability in a high intensity heavy ion beam for heavy ion

fusion drivers, it takes a relatively long time to simulate the instability due to the large mass
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ratio between the ions and the electrons [me/mb = 1/(1836×133) = 4.1×10−6, for cesium],

and the fact that the growth rate of the instability is much smaller than the real frequency

of the eigenmode. The low-noise δf method is even more desirable in such applications.

The δf method can also be used to study detailed linear eigenmode and stability proper-

ties, provided the factor (1−wji) in Eq. (4) is approximated by unity, and the forcing terms

in Eq. (3) are replaced by the unperturbed force. Implementation of the 3D multispecies

nonlinear δf simulation method described above is embodied in the BEST code [7–9] devel-

oped at the Princeton Plasma Physics Laboratory. The code advances the particle motions

using a leap-frog or Runge-Kutta method, and solves Maxwell’s equations in cylindrical ge-

ometry. For those fast particle motions which require much larger sampling frequency 1/∆t

than the frequency of the mode being studied, the code uses an adiabatic field pusher to

advance the particles many time steps without solving for the perturbed fields. The up-

per limit for ∆t, the time step to advance the particles’ phase space position, is normally

determined by the Courant condition. For the e-p two-stream instability, the electrons’

transverse motion requires the smallest ∆t, and the mode frequency is comparable to the

electron bounce frequency in the transverse direction. We can therefore update the elec-

trons’ phase space positions more often than the field. On the IBM SP supercomputer at the

National Energy Research Scientific Computing Center, the BEST code typically advances

4.2 × 1011 particles×time-steps when simulating the electron-ion two-stream instability in

high intensity beams.

III. EQUILIBRIUM

For practical accelerator experiments, it is important to obtain the equilibrium (∂/∂t = 0)

distribution functions fj0 of the quiescent beam (j = b) and any other possible charged par-

ticle components intentionally or unintentionally introduced into the system. From the

equilibrium distribution function fj0, the rms radius, transverse emittance and other impor-

tant beam parameters can be readily calculated. It is also necessary to know, analytically

or numerically, the equilibrium distribution function fj0 in order to carry out the particle

simulations for the perturbed distribution function δfj.

Although there are many possible choices of fj0 [1, 2, 11], in the present study we assume

that the background equilibrium distribution (∂/∂t = 0) is the self-consistent bi-Maxwellian
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distribution with temperature Tj⊥ = const. in the x−y plane, and temperature Tj‖ = const.

in the z-direction. That is,

fj0(r,p) =
n̂j

(2πmj)3/2γ
5/2
j Tj⊥T

1/2
j‖

(8)

× exp

{
−(pz − γjmjβjc)

2

2γ3
j mjTj‖

}

× exp

{
−p2

⊥/2γjmj + γjmjω
2
βjr

2/2 + ej(φ0 − βjAz0)

Tj⊥

}
,

where n̂j is the density on axis (r = 0) of the j’th species. Here, φ0 and Az0 are equilibrium

self-field potentials, determined self-consistently from the nonlinear Maxwell equations

1

r

∂

∂r
r
∂φ0(r)

∂r
= −4π

∑
j

ej

∫
d3pfj0(r,p), (9)

1

r

∂

∂r
r
∂Az0(r)

∂r
= −4π

c

∑
j

ej

∫
d3pvzfj0(r,p).

Unlike the Kapchinskij-Vladimirskij (KV) distribution [1, 2], which is unstable due to the

highly inverted distribution in phase space, a single-species charged particle beam with bi-

Maxwellian distribution in Eq. 8 has been proven to be linearly and nonlinearly stable [2–4]

for transverse perturbations with kz = 0. Numerically, Eqs. (8) and (9) can be easily solved.

We demonstrate the equilibrium solutions using a set of beam parameters typical for heavy

ion fusion drivers. We consider a Cs+ beam with rest mass mb = 133 mp, where mp is the

proton rest mass, and kinetic energy (γb − 1)mc2 = 2.5 GeV. To study the ion-electron two-

stream instability, a electron poplulation is introduced into the system with Ve = 0 and ωβe =

0 (corresponding to axially stationary electrons). The beam intensity is taken to be near

the space-charge-dominated limit, corresponding to sb ≡ ω̂2
pb/2γ

2
b ω

2
βb = 0.999. The fractional

charge neutralization f ≡ n̂e/n̂b is taken to be 10%, where n̂e and n̂b are the electron and

beam ion densities on axis (r = 0). Plotted in Fig. 1 are the normalized equilibrium density

profiles for the cesium ions and electrons, n0
j (r)/n̂j = (1/n̂j)

∫
d3pfj0(r,p, t) (j = b, e), which

are readily obtained once the equilibrium potentials φ0 and Az0 are solved numerically from

Eqs. (8) and (9). The transverse temperatures of the electrons and ions in Fig. 1 are chosen

to be Tb⊥/γbmbV
2
b = 1.1×10−6 and Te⊥/γbmbV

2
b = 2.47×10−6 , such that the ion and electron

density profiles overlap radially. The overlapping of the electron density profile with that

of the ions is expected to maximize the two-stream interaction and therefore the growth

rate. In the space-charge-dominated limit (sb → 1), if there is no electron population, the
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FIG. 1: Plots of the normalized density profiles of the equilibrium beam ions and background

electrons.
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FIG. 2: Plots of the normalized density profile of the equilibrium beam ions with no background

electron population.

beam will have a flat-top density profile as illustrated in Fig. 2. Plotted in Fig. 2 is the beam

density profile with the same beam intensity parameter sb as the case in Fig. 1, but without

a background electron population. Comparing the two cases, we conclude that the presence

of a small population of background electrons offsets some of the space-charge force and

produces the bell-shape beam density profile in Fig. 1.
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IV. EIGENMODE ANALYSIS IN HIGH INTENSITY BEAMS

As mentioned in Sec. II, the δf particle simulation method is an effective tool to study

linear eigenmodes in a high intensity beam. In this section, we present two such examples.

First, we simulate the kz = 0, l = 0 (∂/∂z = ∂/∂θ = 0) body mode for a 1.85 GeV

proton beam characteristic of the PSR experiment with axial current Ib = Nbebβbc = 69A,

directed axial velocity Vb = 0.84c, rms equilibrium beam radius Rb0 = 1.7cm, wall radius

rw = 5.0 cm, normalized on-axis (r = 0) beam intensity sb = ω̂2
pb/2γ

2
b ω

2
βb = 0.158, and

normalized beam temperature Tb/γbmbβ
2
b c

2 = 7.22 × 10−6. The system is perturbed about

the equilibrium state by an initial density perturbation which varies smoothly across the

beam radius, with zero net perturbed charge density. The evolution of the perturbation

is followed from t = 0 to t = 200ω−1
βb . Shown in Fig. 3(a) is the fast-Fourier-transform

spectrum of the density perturbation at one spatial location, from which we can clearly

identify the first four eigenmodes of the system at frequencies ω1 = 1.94 ωβb, ω2 = 3.87 ωβb,

ω3 = 5.83 ωβb, and ω4 = 7.77 ωβb. The corresponding potential perturbation, δφn(r), for

each eigenmode is plotted in Fig. 3(b). We follow the convention in previous analytical

and numerical studies [2, 12], and use the notation n = 1, 2, 3, ... to label the radial

mode number of the discrete eigenmodes. Numerically, δφn(r) is extracted from δφ(r, t) by

determining the Fourier component of δφ(r, t) oscillating at frequency ωn. As is evident from

Fig. 3, consistent with previous analytical and numerical studies, the eigenfunction δφn(r)

has n zeros when plotted as a function of r. Plotted in Fig. 4 is the dependence of the

eigenfrequencies ωn on the beam intensity parameter sb while the rms beam radius is kept

constant. It is clear that starting from ωn = 2nωβb at sb = 0, the eigenfrequencies of the

body modes decreases for increasing beam intensity.

As a second example, we study the linear surface mode for perturbations about a thermal

equilibrium ion beam in the space-charge-dominated regime, with flat-top density profile.

The BEST code, operating in its linear stability mode, has recovered very well-defined

eigenmodes with mode structures and eigenfrequencies which agree well with theoretical

predications [2, 13]. For the dipole mode with azimuthal mode number l = 1, the dispersion

relation for these modes is given by[13]

ω = kzVb ± ω̂pb√
2γb

√
1 − r2

b

r2
w

, (10)
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FIG. 3: (a)Fast-Fourier-transform (FFT) spectrum of perturbed density measured in the simula-

tion, and (b) the corresponding eigenmode structures.

where rb is the radius of the beam edge, and rw is location of the conducting wall. In Eq.

(10), ω̂2
pb = 4πn̂be

2
b/γbmb is the ion plasma frequency-squared, and ω̂pb/

√
2γb w ωβb has

been assumed in the space-charge-dominated limit. Shown in Fig. 5(a) is a comparison

between plots of the eigenfrequency versus rw/rb obtained from the simulations (diamonds

and triangles) and that predicted by Eq. (10) (solid curves). The system parameters for this

simulation are chosen close to the space-charge limit, and the perturbation has normalized

axial wavenumber kzVb/ωβb = 2π. It is clear from Fig. 5 that the simulation results agree

very well with theoretical predictions. The surface modes are of practical interest because

they can be destabilized by a two-stream electron-ion interaction when background electrons

are present.
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V. TWO-STREAM INSTABILITY

It has been recognized recently, both in theoretical studies and in experimental obser-

vations [2, 13–25], that the relative streaming motion of the high-intensity beam particles

through a background charge species provides the free energy to drive the classical two-

stream instability, appropriately modified to include the effects of dc space charge, relativis-

tic kinematics, presence of a conducting wall, etc. A well-documented example is the e-p

instability observed in the PSR experiment [11-12], although a similar instability also ex-

ists for other ion species, including ion-electron interactions in electron storage rings [13-15].

When electrons are present, two-stream interactions in heavy ion fusion drivers are expected

to be stronger than the two-stream instabilities observed so far in proton machines (as well

as electron machines) because of the much larger beam intensity. As an example of using

the BEST code to study beam instabilities, we present here the simulation results of the

ion-electron two-stream instabilities in a typical heavy ion fusion driver and in the PSR

experiment.

For the case of a typical heavy ion fusion driver, we consider a 2.5 GeV Cs+ beam

carrying 3000 A current propagating in a cylindrical chamber with wall radius rw = 9 cm.

The beam intensity is taken to be near the space-charge-dominated limit, corresponding

to sb = 0.999. The fractional charge neutralization f ≡ n̂e/n̂b is taken to be 10%.The

ion-electron equilibrium solution is plotted in Fig. 1. After small-amplitude perturbations
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FIG. 5: (a) Measured dipole-mode oscillation frequency versus rb/rw ' √
2Rb0/rw, and (b) Fast-

Fourier-transform spectrum for fixed value of rb/rw = 0.47.

are excited at t = 0, the system is evolved self-consistently for thousands of oscillation

periods. Plotted in Fig. 6 is the time history of the beam density perturbation at one spatial

location. Evidently, after an initial transition period, the perturbation grows exponentially,

which is the expected behavior of an instability during the linear growth phase. In Fig. 7,

the x−y projection of the perturbed potential δφ at a fixed longitudinal position are plotted

at t = 0 and t = 32.5/ωβb. Clearly, δφ grows to a moderate amplitude by t = 3.25/ωβb,

and the l = 1 dipole mode is the dominant unstable mode, for which the growth rate

is measured to be Im ω = 0.78ωβb. The l = 1 dipole-mode instability observed here has

features similar to the hose instability [26] in the collisionless limit. The real eigenfrequency

of the mode is Re ω = 480ωβb, and the normalized wavelength at maximum growth is
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FIG. 6: Time history of perturbed density δnb/n̂b at a fixed spatial location. After an initial

transition period, the l = 1 dipole-mode perturbation grows exponentially.

kzVb/ωβb = 480.4. Plots of the instability growth rate Im ω versus kzVb/ωβb, with other

parameters kept constant, are shown in Fig. 8. The kzVb/ωβb dependence of the growth rate

is qualitatively consistent with the analytical results obtained for uniform-density beams [13].

The important physics here is that only for a certain range of kzVb/ωβb can the collective

mode of the beam ions effectively resonate with the electrons and produce instability.

In the simulation results presented above, we have assumed initially cold beam ions in

the longitudinal direction (∆pb‖/pb‖ = 0) to maximize the growth rate of the instability.

Here, pb‖ = γbmbVb. In general, when the longitudinal momentum spread of the beam ions

is finite, Landau damping by parallel ion kinetic effects provides a mechanism that reduces

the growth rate. Shown in Fig. 9 is a plot of the maximum linear growth rate (Imω)max

versus the normalized initial axial momentum spread ∆pb‖/pb‖ obtained in the numerical

simulations. As evident from Fig. 9 , the growth rate decreases dramatically as ∆pb‖/pb‖

is increased. When ∆pb‖/pb‖ is high enough, about 0.58% for the case in Fig. 9, the mode

is completely stabilized by longitudinal Landau damping effects by the beam ions. This

result agrees qualitatively with theoretical predications [15]. For a fixed value of ∆pb‖/pb‖,

the growth rate obtained from the simulation is several times smaller than the theoretical

value [2, 13–15]. This difference can be attributed to the fact that the theoretical value
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FIG. 7: The x-y projection (at fixed value of z) of the perturbed electrostatic potential δφ(x, y, t)

for the ion-electron two-stream instability growing from a small initial perturbation, shown at (a)

t = 0, and (b) ωβbt = 3.25.

is derived for a Kapchinskij-Vladimirskij (KV) beam with flat-top density profile, whereas

the simulations are carried out for a more realistic thermal equilibrium beam with bell-

shape density profile. Because the phase velocity of the unstable mode in the longitudinal

direction is far removed from the electron velocity distribution | ω/kz |� Ve + vTe‖, we do

not expect the longitudinal electron temperature to significantly affect the growth rate of

the instability. The nonlinear space-charge potential due to the bell-shape density profiles
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FIG. 8: Plot of the linear growth rate versus kzVb/ωβb.

FIG. 9: The maximum linear growth rate (Im ω)max of the ion-electron two-stream instability

decreases as the longitudinal momentum spread of the beam ions increases.

induces substantial tune spread in the transverse direction, which provides a growth rate

reduction mechanism for the two-stream instability.

Similar simulations have been carried out for the e-p two-stream instability in the PSR

experiment, even though the numerical values of the key parameters of the instability, such

as the growth rate and the real frequency, differs by several orders of magnitude compared
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FIG. 10: Maximum growth rate versus normalized beam density for different values of initial axial

momentum spread of the beam ions and fractional charge neutralization f = n̂e/n̂b = 0.08.

with the ion-electron instability in a heavy ion fusion driver. In the parameter regime of

the PSR experiment, the simulation results agree well with the experimental observations in

terms of the real frequency, wavelength and mode structure [7]. For brevity, we present here

only the threshold properties of the instability. Detailed numerical investigations of the e-p

instability have been carried out for a wide range of beam intensities and fractional charge

neutralization. The space-charge intensity varies from moderate to strong, corresponding

to 0.008 ≤ sb = ω̂2
pb/2γ

2
b ω

2
βb ≤ 0.158, where ω̂2

pb = 4πn̂be
2
b/γbmb is the on-axis (r = 0) ion

plasma frequency-squared. The fractional charge neutralization f ≡ n̂e/n̂b is allowed to

vary from 5% to 25%, where n̂e and n̂b are the electron and beam ion number densities on

axis (r = 0). In Fig. 10, for the case where f = n̂e/n̂b = 0.08, the maximum growth rate in

the simulations is plotted versus the normalized beam density n̂b/n̂b0 for different values of

initial axial momentum spread. Here, n̂b0 = 9.41× 108cm−3 is the beam ion number density

on axis for the baseline case, corresponds to ω̂2
pb/2γ

2
b ω

2
βb = 0.079 and an average current of

35A in the PSR experiment. It is evident from the results shown in Fig. 10 that the growth

rate is an increasing function of normalized beam density n̂b/n̂b0, but a decreasing function

of the longitudinal momentum spread, which qualitatively agrees with previous analytical

results [15]. As demonstrated in Fig. 9, a larger longitudinal momentum spread induces

stronger Landau damping by parallel kinetic effects and therefore reduces the growth rate of

the instability, whereas higher beam intensity provides more free energy to drive a stronger
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instability.

As a result of the presence of several important damping mechanisms, an instability

threshold is observed in the simulations. Plotted in Fig. 11 is the instability threshold in

terms of the normalized beam density n̂b/n̂b0 as a function of momentum spread ∆pb‖/pb‖ for

different values of fractional charge neutralization f. Evidently, larger momentum spread and

smaller fractional charge neutralization imply a higher density threshold for the instability

to occur. For a specified value of f , if (∆pb‖/pb‖, n̂b/n̂b0) fall below the curves in Fig. 11, then

there is no two-stream instability. Finally, in Fig. 12, we simulate an unstable case to its fully
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FIG. 11: Density threshold for the two-stream instability as a function of beam axial momentum

spread for different values of fractional charge neutralization.

nonlinear phase. This case corresponds to n̂b/n̂b0 = 1, ω̂2
pb/2γ

2
b ω

2
βb = 0.079, f = 0.1, and

∆pb‖ = 0 = ∆pe‖ at t = 0. In Fig. 12, the time history of the density perturbations at fixed

spatial location is shown for both species. There are basically two phases for the evolution

of the instability. The first phase is the linear stage where the density perturbations for

both species grow exponentially. However, due to the large mass ratio between the protons

and the electrons, the density perturbation amplitude for the electrons is much larger than

that for the protons. When the linear growth saturates, the saturation level for the electron

density perturbation is therefore much larger. The saturation level for the electron density

perturbation shown in Fig. 12 is about 8%, whereas the saturation level for the proton density

is very small (less than 0.1%).
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FIG. 12: Linear and nonlinear phases of the e-p two-stream instability. Plotted is the time history

of the density perturbation for the (a) protons and (b) electrons at a fixed spatial location.

The second phase of the instability is the nonlinear phase, starting approximately at

t = 500/ωβb, during which the electron density perturbation level stays nearly constant

around the 8% level. In this phase, the electron density perturbation shows no extra dy-

namical behavior other than the initial nonlinear saturation. However, the proton density

perturbation grows first slowly and then very fast after t = 1400/ωβb to a high level, consid-

erably larger than that of the electron density perturbation. This simulation result suggests
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that the late-time growth of the e-p instability observed experimentally in PSR has likely

passed the initial linear growth and saturation phase, and entered the second stage of strong

nonlinear growth evident in Fig. 12. It also points to the possible physical mechanism pro-

posed by Channell [27] that due to the large mass ratio, the electron density perturbation

quickly saturates long before the proton density perturbation becomes sizeable, and the

large electron density fluctuation level then provides a newly developed background force

that drives the proton density perturbations to a large level on a longer time scale [27].

VI. CONCLUSIONS

In conclusion, a 3D multispecies nonlinear δf particle simulation method has been de-

veloped to study collective processes in intense charged particle beams described self-

consistently by the Vlasov-Maxwell equations. Compared with conventional particle-in-cell

simulations, the noise level in nonlinear perturbative particle simulations is significantly

reduced. Implemented in the BEST code, the δf formalism has been tested and applied

in different beam parameter regimes. The code can be easily switched between linear and

nonlinear operation, and used to study both linear stability properties and nonlinear beam

dynamics. Linear eigenmodes of high intensity charged particle beams, such as the body

modes and the surface modes, have been systematically studied using the BEST code. In

particular, large-scale parallel simulations have also been carried out to study the ion-electron

two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy ion

fusion applications, and for the e-p two-stream instability observed in the PSR experiment.

Important properties of this instability were investigated numerically, and are found to be

in qualitative agreement with theoretical predictions and the PSR experiment. Numerically,

the instability threshold was found to decrease with increasing fractional charge neutraliza-

tion, and increase with increasing axial momentum spread of the beam particles. In the

nonlinear phase, the simulation results showed that the instability first saturates at a rela-

tively low level, and subsequently grows to a much larger level. Even though a wide range

of collective effects in high intensity charged particle beams have been studied, the present

simulations have been curried out for a long coasting beam. Investigations of the effects of

finite bunch length, inclusion of electron production mechanisms, and other extensions have

been planned for future work.
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